skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gibbs, Theo_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The competitive effect of one individual on another can have impacts beyond just reductions in performance. Because species plastically respond to their environment, competition can also induce changes in species traits, and in turn, these modified traits can then affect interactions with yet other individuals. In this context, plasticity is often argued to favor species coexistence by increasing the niche differentiation between species, though experimental evidence for this hypothesis that explicitly projects competitive outcomes is largely lacking. Here, we transiently subjected four annual plant species to early‐season intraspecific or interspecific competition to explicitly induce plastic responses and then examined the response of these individuals to competitors faced later in life. Competing with nearby individuals early in the growing season tended to amplify the sensitivity of individuals to competition, and particularly so for interspecific competition, but the strength of this effect depended on the identity of the focal species. This increase in interspecific relative to intraspecific competition caused plasticity to decrease the predicted likelihood of pairwise coexistence. By combining recent theory with a new experimental approach, we provide a pathway toward integrating phenotypic plasticity into our quantitative understanding of coexistence. 
    more » « less
  2. Abstract Most ecological models are based on the assumption that species interact in pairs. Diverse communities, however, can have higher‐order interactions, in which two or more species jointly impact the growth of a third species. A pitfall of the common pairwise approach is that it misses the higher‐order interactions potentially responsible for maintaining natural diversity. Here, we explore the stability properties of systems where higher‐order interactions guarantee that a specified set of abundances is a feasible equilibrium of the dynamics. Even these higher‐order interactions which lead to equilibria do not necessarily produce stable coexistence. Instead, these systems are more likely to be stable when the pairwise interactions are weak or facilitative. Correlations between the pairwise and higher‐order interactions, however, do permit robust coexistence even in diverse systems. Our work not only reveals the challenges in generating stable coexistence through higher‐order interactions but also uncovers interaction patterns that can enable diversity. 
    more » « less